fo/u fopkjr Hkh# tu] ughavkjEHks dke] foifr n{k NkWs-rjar e/;e eu dj ';keA i#"k flg lalYi dj] lgrs foifr vusl] ^cuk^ u NkWs-/;\$ dk\$ j?kqj jk[ks VslAA ifpr%ekuo /ke2 izksk I nx# Jh j.kVkWnkl th egkjkt

STUDY PACKAGE

Subject : Mathematics

Topic: COMPLEX NUMBER

Available Online: www.MathsBySuhag.com

<u>Index</u>

- 1. Theory
- 2. Short Revision
- 3. Exercise (Ex. 1 + 5 = 6)
- 4. Assertion & Reason
- 5. Que. from Compt. Exams
- 6. 39 Yrs. Que. from IIT-JEE(Advanced)
- 7. 15 Yrs. Que. from AIEEE (JEE Main)

Student's Name	:
Class	:
Roll No.	:

Address: Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal : 0 903 903 7779, 98930 58881, WhatsApp 9009 260 559 www.TekoClasses.com www.MathsBySuhag.com

The complex number system

There is no real number x which satisfies the polynomial equation $x^2 + 1 = 0$. To permit solutions of this and similar equations, the set of complex numbers is introduced.

We can consider a complex number as having the form a + bi where a and b are real number and i, which is called the imaginary unit, has the property that $i^2 = -1$.

It is denoted by z i.e. z = a + ib. 'a' is called as real part of z which is denoted by (Re z) and 'b' is called as imaginary part of z which is denoted by (Im z).

Any complex number is:

- (i) Purely real, if b = 0 ; (ii) Purely imaginary, if a = 0
- (iii) Imaginary, if $b \neq 0$.

NOTE: (a) The set R of real numbers is a proper subset of the Complex Numbers. Hence the complete number system is $N \subset W \subset I \subset Q \subset R \subset C$.

- (b) Zero is purely real as well as purely imaginary but not imaginary.
- (c) $i = \sqrt{-1}$ is called the imaginary unit.

Also
$$i^2 = -1$$
; $i^3 = -i$; $i^4 = 1$ etc.

- (d) $\sqrt{a} \sqrt{b} = \sqrt{ab}$ only if atleast one of a or b is non negative.
- (e) is z = a + ib, then a ib is called complex conjugate of z and written as $\overline{z} = a ib$

Self Practice Problems

Write the following as complex number

(i)
$$\sqrt{-16}$$

(ii)
$$\sqrt{x}$$
, $(x > 0)$

(iii)
$$-b + \sqrt{-4ac}$$
, $(a, c > 0)$

Ans. (i)
$$0 + i \sqrt{16}$$
 (ii) $\sqrt{x} + 0i$ (iii) $-b + i \sqrt{4ac}$

Write the following as complex number

(i)
$$\sqrt{\chi} (x < 0)$$
 (ii)

roots of
$$x^2 - (2 \cos \theta)x + 1 = 0$$

2. Algebraic Operations:

Fundamental operations with complex numbers

In performing operations with complex numbers we can proceed as in the algebra of real numbers replacing i^2 by -1 when it occurs.

$$(a + bi) + (c + di) = a + bi + c + di = (a + c) + (b + d) i$$

 $(a + bi) - c + di) = a + bi - c - di = (a - c) + (b - d) i$

Multiplication
$$(a + bi)(c + di) = ac + adi + bci + bdi^2 = (ac - bd) + (ad+ bc)i$$

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-bi}{c-di} = \frac{ac-adi+bci-bdi^2}{c^2-d^2i^2}$$
$$= \frac{ac+bd+(bc-ad)i}{c^2-d^2} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

Inequalities in complex numbers are not defined. There is no validity if we say that complex number is positive or negative.

e.g. z > 0, 4 + 2i < 2 + 4i are meaningless.

In real numbers if $a^2 + b^2 = 0$ then a = 0 = b however in complex numbers, $z_1^2 + z_2^2 = 0$ does not imply $z_1 = z_2 = 0$.

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com ອີ່ສີ Solution

Find multiplicative inverse of 3 + 2i.

Let z be the multiplicative inverse of 3 + 2i. then

$$\Rightarrow$$
 z. $(3 + 2i) = 1$

$$\Rightarrow$$
 $z = \frac{1}{3+2i} = \frac{3-2i}{(3+2i)(3-2i)}$

$$\Rightarrow z = \frac{3}{13} - \frac{2}{13} i$$

$$\left(\frac{3}{13} - \frac{2}{13}i\right)$$
 Ans

Self Practice Problem

1. Simplify
$$i^{n+100} + i^{n+50} + i^{n+48} + i^{n+46}$$
, $n \in I$.

Ans. 0

3. Equality In Complex Number:

Two complex numbers $z_1 = a_1 + ib_1 \& z_2 = a_2 + ib_2$ are equal if and only if their real and imaginary parts are equal respectively

i.e.
$$z_1 = z_2$$
 \Rightarrow $Re(z_1) = Re(z_2)$ and $I_m(z_1) = I_m(z_2)$.

ot

$$\Rightarrow 2x^2 - 3y = 2x - 3$$

$$\Rightarrow x^{2} - x = 0$$

$$\Rightarrow x = 0, 1 \quad \text{and} \quad 3x^{2}$$

$$\Rightarrow \qquad \text{if } x = 0, y = \frac{5}{2} \quad \text{and} \qquad \text{if } x = 1, y = 1$$

$$x = 0, y = \frac{5}{2}$$
 and $x = 1, y = 1$

are two solutions of the given equation which can also be represented as $\left(0, \frac{5}{2}\right)$ & (1, 1)

$$\left(0, \frac{5}{2}\right)$$
, (1, 1) Ans.

Find the value of expression $x^4 - 4x^3 + 3x^2 - 2x + 1$ when x = 1 + i is a factor of expression.

$$\Rightarrow$$
 X

$$\Rightarrow \qquad x - 1 = i$$

$$\Rightarrow \qquad (x - 1)^2 = -1$$

$$\Rightarrow (x-1)^2 = -1$$

$$\Rightarrow x^2 - 2x + 2 = 0$$
Now $x^4 - 4x^3 + 3x^2 - 2x + 3x^2 - 3x^2 3x^$

Now
$$x^4 - 4x^3 + 3x^2 - 2x + 1$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 2) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 3) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 3) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 3) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 3) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 3) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 3) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 3) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 3) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 3) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 3) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 3) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 3) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 3) (x^{2} - 3x - 3) - 4x + 7$$

$$= (x^{2} - 2x + 3) (x^{$$

$$x^4 - 4x^3 + 3x^2 - 2x + 1 = 0 - 4(1 + i) + 7$$

= -4 + 7 - 4i
= 3 - 4i **Ans.**

Solve for z if $z^2 + |z| = 0$

Let
$$z = x + iy$$

$$\Rightarrow (x + iy)^2 + \sqrt{x^2 + y^2} = 0$$

$$x^2 - y^2 + \sqrt{x^2 + y^2} = 0$$
 and $2xy = 0$

$$\Rightarrow$$
 x = 0 or y = 0

when
$$x = 0$$
 $-y^2 + |y| = 0$

$$y = 0, 1, -1$$

$$\Rightarrow z = 0, i, -i$$

when
$$y = 0$$
 $x^2 + |x| = 0$

when
$$y = 0$$
 $x^2 + |x| = 0$
 \Rightarrow $z = 0$ **Ans.** $z = 0$, $z = i$, $z = -i$

Find square root of 9 + 40i

Let
$$(x + iy)^2 = 9 + 40i$$

Let
$$(x + iy)^2 = 9 + 40i$$

 $\therefore x^2 - y^2 = 9$

$$x^2 - y^2 = 9$$
(i)

we get $x^4 + y^4 - 2x^2 y^2 + 4x^2 y^2 = 81 + 1600$ $\Rightarrow (x^2 + y^2)^2 = 168$ $\Rightarrow x^2 + y^2 = 4$ (iii squing (i) and adding with 4 times the square of (ii)

$$\Rightarrow (x^2 + y^2)^2 = 168$$

$$\Rightarrow x^2 + y^2 = 4$$

from (i) + (iii) we get
$$x^2 = 25$$
 \Rightarrow

$$x^2 = 25$$
 \Rightarrow $x = \pm 5$
and $y = 16$ \Rightarrow $y = \pm 4$

from equation (ii) we can see that

x & y are of same sign

$$x + iy = +(5 + 4i) \text{ or } = (5 + 4i)$$

sq. roots of
$$a + 40i = \pm (5 + 4i)$$

roots of
$$a + 40i = \pm (5 + 4i)$$
 Ans. $\pm (5 + 4i)$

Solve for $z : \overline{z} = i z^2$

Ans.
$$\pm \frac{\sqrt{3}}{2} - \frac{1}{2}i, 0, i$$

Representation Of A Complex Number:

Cartesian Form (Geometric Representation):

Every complex number z = x + iy can be represented by a point on the Cartesian plane known as complex plane (Argand diagram) by the ordered pair (x, y).

Length OP is called modulus of the complex number which is denoted by $|z| \& \theta$ is called the argument or amplitude.

$$|z| = \sqrt{x^2 + y^2} \& \theta = \tan^{-1} \frac{y}{x}$$
 (angle made by OP with positive x-axis)

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

- Argument of a complex number is a many valued function. If θ is the argument of a complex number then $2 n\pi + \theta$; $n \in I$ will also be the argument of that complex number. Any two arguments of a complex number differ by $2n\pi$.
 - The unique value of θ such that $-\pi < \theta \le \pi$ is called the principal value of the argument. Unless otherwise stated, amp z implies principal value of the argument.
 - (iii) By specifying the modulus & argument a complex number is defined completely. For the complex number 0 + 0 i the argument is not defined and this is the only complex number which is only given by its modulus.
 - (b) Trignometric/Polar Representation :

 $z = r (\cos \theta + i \sin \theta)$ where |z| = r; arg $z = \theta$; $\overline{z} = r (\cos \theta - i \sin \theta)$

NOTE: $\cos \theta + i \sin \theta$ is also written as CiS θ or $e^{i\theta}$.

are known as Euler's identities.

- Euler's Representation: $z = re^{i\theta}$; |z| = r; arg $z = \theta$; $\overline{z} = re^{-i\theta}$
- **Vectorial Representation:**

Every complex number can be considered as if it is the position vector of a point. If the point

P represents the complex number z then, $\overrightarrow{OP} = z \& | \overrightarrow{OP} | = |z|$.

Express the complex number $z = -1 + \sqrt{2}i$ in polar form.

Arg
$$z = \pi - \tan^{-1} \left(\frac{\sqrt{2}}{1} \right) = \pi - \tan^{-1} \sqrt{2} = \theta$$
 (say)

$$z = \sqrt{3} (\cos \theta + i \sin \theta)$$
 where $\theta = \pi - \tan^{-1} \sqrt{2}$

Self Practice Problems

Find the principal argument and |z

$$z = \frac{-1(9+i)}{2-i}$$

Ans.
$$-\tan^{-1}\frac{17}{11}$$
, $\sqrt{\frac{8^2}{5}}$

Find the |z| and principal argument of the complex number $z = 6(\cos 310^{\circ} - i \sin 310^{\circ})$

Ans.

Modulus of a Complex Number :

If z = a + ib, then it's modulus is denoted and defined by $|z| = \sqrt{a^2 + b^2}$. Infact |z| is the distance of z from origin. Hence $|z_1 - z_2|$ is the distance between the points represented by z_1 and z_2 .

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

Properties of modulus

(i)
$$|z_1 z_2| = |z_1| \cdot |z_2|$$
 (ii) $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$ (provided $z_2 \neq 0$) (iii) $|z_1 + z_2| \leq |z_1| + |z_2|$ (iv) $|z_1 - z_2| \geq ||z_1| - |z_2||$

(iii)
$$|z_1 + z_2| \le |z_1| + |z_2|$$
 (iv) $|z_1 - z_2| \ge ||z_1| - |z_2|$

(Equality in (iii) and (iv) holds if and only if origin, z, and z, are collinear with z, and z, on the same side of origin)

If |z-5-7i| = 9, then find the greatest and least values of |z-2-3i|.

We have 9 = |z - (5 + 7i)| = distance between z and 5 + 7i. Thus locus of z is the circle of radius 9 and centre at 5 + 7i. For such a z (on the circle), we

have to find its greatest and least distance as from 2 + 3i, which obviously 14 and 4.

Example: Find the minimum value of |1 + z| + |1 - z|. Solution $|1 + z| + |1 - z| \ge |1 + z + 1 - z|$ (triangle inequality)

 $|1 + z| + |1 - z| \ge 2$

... minimum value of (|1+z|+|1-z|)=2Geometrically |z+1|+|1-2|=|z+1|+|z-1| which represents sum of distances of z from

it can be seen easily that minimu (PA + PB) = AB = 2

Ans.
$$2^{1/4}e^{1\left(\frac{\pi}{8}+n\pi\right)}$$

1 then find the maximum and minimum value of $\left|z\right|$ **Example:**

 $\leq \left| z - \frac{2}{2} \right| \leq \left| z \right| + \left| -\frac{2}{z} \right|$

$$\Rightarrow \qquad \left| \frac{r-2}{r} \right| \le 1 \le r + \frac{2}{r}$$

$$r + \frac{2}{r} \ge 1$$
 \Rightarrow $r \in \mathbb{R}^+$ (i

and
$$\left| \begin{array}{c} r - \frac{2}{r} \right| \leq 1 \Rightarrow & -1 \leq r - \frac{2}{r} \leq 1 \\ \Rightarrow & r \in (1, 2) &(ii) \\ \therefore & \text{from (i) and (ii)} \quad r \in (1, 2) \end{array} \right|$$

 $r \in (1, 2)$

- |z-3| < 1 and |z-4i| > M then find the positive real value of M for which these exist at least one complex number z satisfy both the equation. $M \in (0, 6)$
- Agrument of a Complex Number :

Argument of a non-zero complex number P(z) is denoted and defined by arg(z) = angle which OP

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0

makes with the positive direction of real axis. If OP = |z| = r and $arg(z) = \theta$, then obviously $z = r(\cos\theta + i\sin\theta)$, called the polar form of z. In what follows, 'argument of z' would mean principal argument of z(i.e. argument lying in $(-\pi, \pi]$ unless the context requires otherwise. Thus argument of a complex number $z = a + ib = r(\cos\theta + i\sin\theta)$ is the value of θ satisfying $r\cos\theta = a$ and $r\sin\theta = b$.

according as z = a + ib lies in I, II, III or IVth quadrant.

Properties of arguments

- $arg(z_1z_2) = arg(z_1) + arg(z_2) + 2m\pi$ for some integer m.
- $arg(z_1/z_2) = arg(z_1) arg(z_2) + 2m\pi$ for some integer m.
- $arg(z^2) = 2arg(z) + 2m\pi$ for some integer m.
- arg(z) = 0z is real, for any complex number $z \neq 0$
- $arg(z) = \pm \pi/2 \Leftrightarrow$ z is purely imaginary, for any complex number $z \neq 0$
- $arg(z_2 z_1) = angle$ of the line segment $P'Q' \mid PQ$, where P' lies on real axis, with the real axis.

Solve for z, which satisfy Arg $(z-3-2i)=\frac{\pi}{6}$ and Arg $(z-3-4i)=\frac{2\pi}{3}$.

From the figure, it is clear that there is no z, which satisfy both ray

Sketch the region given by

- (i) (ii) Arg $(z - 1 - i) \ge \pi/3$
- $|z| = \le 5 \& Arg (z i 1) > \pi/3$

- Sketch the region given by
 - $|Arg(z-i-2)| < \pi/4$
- (ii) Arg $(z + 1 - i) \le \pi/6$
- Consider the region $|z 15i| \le 10$. Find the point in the region which has
 - max arg (z)

min arg (z)

Conjugate of a complex Number

Conjugate of a complex number z = a + b is denoted and defined by $\overline{z} = a - ib$.

In a complex number if we replace i by -i, we get conjugate of the complex number. \bar{z} is the mirror image of z about real axis on Argand's Plane. **Imaginary Axis**

Real Axis

Properties of conjugate

(i)
$$|z| = |\overline{z}|$$

(iii)
$$\overline{(z_1+z_2)} = (\overline{z}_1) + (\overline{z}_2)$$

(ii)
$$z\overline{z} = |z|^2$$

(iv) $\overline{(z_1 - z_2)} = (\overline{z}_1) - (\overline{z}_2)$

(v)
$$(z_1 \ z_2) = \overline{z}_1 \overline{z}_2$$
 (vi) $(\overline{z}_1) = (\overline{z}_1) (z_2 \neq 0)$

(vii)
$$|z_1 + z_2|^2 = (z_1 + z_2) \overline{(z_1 + z_2)} = |z_1|^2 + |z_2|^2 + z_1 \overline{z}_2 + \overline{z}_1 z_2$$

(viii)
$$\overline{(\overline{z}_1)} = z$$

(ix) If
$$w = f(z)$$
, then $\overline{w} = f(\overline{z})$

(x)
$$arg(z) + arg(\overline{z}) = 0$$

If $\frac{z-1}{z+1}$ is purely imaginary, then prove that |z| = 1

Re
$$\left(\frac{\overline{z+1}}{z+1}\right) = 0$$

$$\Rightarrow \frac{z-1}{z+1} + \left(\frac{\overline{z-1}}{z+1}\right) = 0 \Rightarrow \frac{z-1}{z+1} + \frac{\overline{z}-1}{\overline{z}+1} = 0$$

$$\Rightarrow z\overline{z} - \overline{z} + z - 1 + z\overline{z} - z + \overline{z} - 1 = 0$$

$$\Rightarrow z\overline{z} = 1 \Rightarrow |z|^2 = 1$$

$$\Rightarrow |z| = 1$$
Hence proved

If $\frac{z_1 - 2z_2}{2 - z_1\overline{z}_2}$ is unmodulus and z_2 is not unimodulus then find $|z_1|$.

Rotation theorem

If $P(z_1)$ and $Q(z_2)$ are two complex numbers such that $|z_1| = |z_2|$, then $z_2 = z_1 e^{i\theta}$ where $\theta = \angle POQ$

If $P(z_1)$, $Q(z_2)$ and $R(z_3)$ are three complex numbers and $\angle PQR = \theta$, then

 $\frac{\pi}{3}$ then interrupter the locus.

$$\arg\left(\frac{z-1}{z+i}\right) = \frac{\pi}{3}$$

$$\Rightarrow \arg\left(\frac{1-z}{-1-z}\right) = \frac{\pi}{3}$$

Here arg $\left(\frac{1-z}{-1-z}\right)$ represents the angle between lines joining -1 and z and 1 + z. As this angle is constant, the locus of z will be a of a circle segment. (angle in a segment is count). It can be will be equal to -

seen that locus is not the complete side as in the major are arg Now try to geometrically find out radius and centre of this circle

$$centre \equiv \left(0, \frac{1}{\sqrt{3}}\right)$$

Ans.

If A(z + 3i) and B(3 + 4i) are two vertices of a square ABCD (take in anticlock wise order) then find C and D.

Let affix of C and D are $z_3 + z_4$ respectively Considering $\angle DAB = 90^{\circ} + AD = AB$

Self Practice Problems

 z_2 , z_3 , z_4 are the vertices of a square taken in anticlockwise order then prove that $2z_2 = (1+i)z_1 + (1-i)z_3$ $z_3 = (1+i)z_1 + (1-i)z_3$

Ans.

Check that z_1z_2 and z_3z_4 are parallel or, not where, $z_1=1+i$ $z_3=4+2i$ $z_2=2-i$ $z_4=1-i$ Ans. Hence, z_1z_2 and z_3z_4 are not parallel.

P is a point on the argand diagram on the circle with OP as diameter "two point Q and R are taken such that $\angle POQ = \angle QOR$

If O is the origin and P, Q, R are represented by complex z₁, z₂, z₃ respectively then show that $z_2^2 \cos 2\theta = z_1 z_3 \cos^2 \theta$

 $z_1 z_3 \cos^2\theta$

Demoivre's Theorem:

Case I

Statement :

If n is any integer then

- $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
- $\begin{array}{l} (\cos\theta_1+i\sin\theta_1')\,(\cos\theta_2)+i\sin\theta_2)\,(\cos\theta_3+i\sin\theta_2)\,(\cos\theta_3+i\sin\theta_3)\,.....(\cos\theta_n+i\sin\theta_n)\\ =\cos\left(\theta_1+\theta_2+\theta_3+......\theta_n\right)+i\sin\left(\theta_1+\theta_2+\theta_3+......+\theta_n\right) \end{array}$

Case II

Statement : If p, $q \in Z$ and $q \neq 0$ then

$$(\cos\theta+i\sin\theta)^{p/q}=\cos\left(\frac{2k\pi+p\theta}{q}\right)+i\sin\left(\frac{2k\pi+p\theta}{q}\right)$$
 where k = 0, 1, 2, 3,, q-1

page 7 of

Cube Root Of Unity:

- The cube roots of unity are 1, $\frac{-1+i\sqrt{3}}{}$. $\frac{-1-i\sqrt{3}}{}$
- If ω is one of the imaginary cube roots of unity then $1 + \omega + \omega^2 = 0$. In general $1 + \omega^r + \omega^{2r} = 0$; where $r \in I$ but is not the multiple of 3.
- In polar form the cube roots of unity are:

$$\cos 0 + i \sin 0$$
; $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$, $\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$
The three cube roots of unity when plotted on the argand plane constitute the verties of an

- equilateral triangle.
- The following factorisation should be remembered:

(a, b, c
$$\in$$
 R & ω is the cube root of unity)

$$a^3 - b^3 = (a - b) (a - \omega b) (a - \omega^2 b)$$
; $x^2 + x + 1 = (x - \omega) (x - \omega^2)$; $a^3 + b^3 = (a + b) (a + \omega b) (a + \omega^2 b)$; $a^2 + ab + b^2 = (a - bw) (a - bw^2)$ $a^3 + b^3 + c^3 - 3abc = (a + b + c) (a + \omega b + \omega^2 c) (a + \omega^2 b + \omega c)$

Find the value of ω^{192} + ω^{194} $\omega^{192} + \omega^{194}$

$$= 1 + \omega^2 \qquad = -\alpha$$

Ans. - ω

If 1, ω , ω^2 are cube roots of unity prove

 $(1 - \omega + \omega^2) (1 + \omega - \omega^2) = 4$ $(1 - \omega + \omega^2)^5 + (1 + \omega - \omega^2)^5 = 32$ (ii)

(iii)

 $\begin{array}{l} (1-\omega) (1-\omega^2) (1-\omega^4) (1-\omega^8) = 32 \\ (1-\omega) (1-\omega^2) (1-\omega^4) (1-\omega^8) = 9 \\ (1-\omega+\omega^2) (1-\omega^2+\omega^4) (1-\omega^4+\omega^8) \dots \\ (1-\omega+\omega^2) (1+\omega-\omega^2) \\ = (-2\omega) (-2\omega^2) \\ = 4 \end{array}$ (iv) (i)

BOOUTH State Not Of

(i) The cube roo where
$$r \in I$$
 is in the roo of where $r \in I$ is in the solution.

(ii) If ω is one of where $r \in I$ is in the solution.

(iii) In polar form ω cos $0 + i$ sin the tree cubequilateral triangles. Solution.

(iv) The following $(a, b, c \in R)$ as $a^3 + b^3 = (a + a^3 + b^3 + c^3 - a^3 + a^3 +$

Ans. 12

nth Roots of Unity:

If 1, $\alpha_{\text{1}},\,\alpha_{\text{2}},\,\alpha_{\text{3}},....\,\,\alpha_{\text{n-1}}$ are the n, nth root of unity then :

- 1^p + α_1^p + α_2^p +.... + α_{n-1}^p = 0 if p is not an integral multiple of n = n if p is an integral multiple of n
- $\begin{array}{l} (1-\alpha_1)\;(1-\alpha_2).....\;(1-\alpha_{n-1})=n & \& \\ (1+\alpha_1)\;(1+\alpha_2).....\;(1+\alpha_{n-1})=0\; \text{if n is even and 1 if n is odd.} \end{array}$
- 1. $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_{n-1} = 1$ or -1 according as n is odd or even. Find the roots of the equation $z^6 + 64 = 0$ where real part is positive. $z^6 = -64$

$$z^6 = z^6 \cdot e^{+i(2n+1)\pi}$$
 $x \in Z$

$$\Rightarrow z = z e^{i(2n+1)\frac{\pi}{6}}$$

$$i^{\pi} i^{\pi} i^{\pi} i^{\pi} i^{5\pi} i^{7\pi}$$

$$\therefore z = 2 e^{i\frac{\pi}{6}}, 2e^{i\frac{\pi}{2}}, ze^{i\frac{\pi}{2}}, ze^{i\frac{\pi}{2}}, ze^{i\frac{5\pi}{6}} = e^{i\frac{7\pi}{6}}, ze^{i\frac{3\pi}{2}}, ze^{i\frac{11\pi}{2}}$$

$$\therefore \text{ roots with +ve real part are} = e^{\frac{i\pi}{6}} + e^{\frac{i\pi}{6}}$$

$$2e^{i\left(-\frac{\pi}{6}\right)}$$
Ans.

38

Find the value $\sum_{k=1}^{6} \left(\sin \frac{2\pi k}{7} - \cos \frac{2\pi k}{7} \right)$

$$\sum_{k=1}^{6} \left(\sin \frac{2\pi k}{7} \right) = \sum_{k=1}^{6} \left(\cos \frac{2\pi k}{7} \right)$$

$$= \sum_{k=0}^{6} \sin \frac{2\pi k}{7} - \sum_{k=0}^{6} \cos \frac{2\pi k}{7} + 1$$

=
$$\sum_{k=0}^{6}$$
 (Sum of imaginary part of seven seventh roots of unity)

$$-\sum_{k=0}^{6} \text{ (Sum of real part of seven seventh roots of unity)} + 1$$

$$= 0 - 0 + 1 = 1$$

$$= 0 - 0 + 1 = 1$$

Self Practice Problems

Resolve z⁷ – 1 into linear and quadratic factor with real coefficient.

Ans.
$$(z-1)\left(z^2-2\cos\frac{2\pi}{7}z+1\right).\left(z^2-2\cos\frac{4\pi}{7}z+1\right).\left(z^2-2\cos\frac{6\pi}{7}z+1\right)$$

Find the value of $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$.

Ans. –
$$\frac{1}{2}$$

The Sum Of The Following Series Should Be Remembered :

(i)
$$\cos \theta + \cos 2\theta + \cos 3\theta + \dots + \cos n\theta = \frac{\sin(n\theta/2)}{\sin(\theta/2)}\cos(\frac{n+1}{2})\theta$$
.

(ii)
$$\sin \theta + \sin 2\theta + \sin 3\theta + \dots + \sin n\theta = \frac{\sin(n\theta/2)}{\sin(\theta/2)} \sin(\frac{n+1}{2})\theta.$$

NOTE: If $\theta = (2\pi/n)$ then the sum of the above series vanishes

Logarithm Of A Complex Quantity:

(i)
$$\text{Log}_e\left(\alpha+i\;\beta\right) = \frac{1}{2}\,\text{Log}_e\left(\alpha^2+\beta^2\right) + i\!\left(2\,n\,\pi + tan^{-i}\frac{\beta}{\alpha}\right) \text{ where } n\in I.$$

 i^i represents a set of positive real numbers given by $e^{-\left(2\pi\pi+\frac{\pi}{2}\right)}$, $n\in I.$

Find the value of

(i)
$$\log (1 + \sqrt{3} i)$$
 Ans. $\log 2 + i(2n\pi + \frac{\pi}{3})$

(ii)
$$log(-1)$$
 Ans. $i\pi$ (iii) z^i Ans. $cos(ln2) + i sin(ln2) = e^{i(ln2)}$

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

(iv)
$$i^i$$
 Ans. $e^{-(4n+1).\frac{\pi}{2}}$

(v)
$$|(1+i)^i|$$
 Ans. $e^{-(8n+1).\frac{\pi}{4}}$

(vi)
$$arg((1+i)^i)$$
 Ans. $\frac{1}{2} \ln(2)$.

ution. (i)
$$\log (1 + \sqrt{3} i) = \log \left(2 e^{i \left(\frac{\pi}{3} + 2n\pi \right)} \right)$$

$$= \log 2 + i \left(\frac{\pi}{3} + 2n\pi \right)$$

(iii)
$$2^{i} = e^{i \ln 2} = \cos (\ln 2) \cos (\ln 2) + i \sin (\ln 2)$$

Ans.
$$\frac{1-e^2}{2ei}$$

$$z = \frac{mz_2 + nz_1}{m + n}$$

$$z = \frac{mz_2 - nz_1}{m - n}$$

0 98930 58881.

K. Sir), Bhopal Phone: 0 903 903 7779,

Teko Classes, Maths: Suhag R. Kariya (S. R.

$$\frac{(\mathsf{asec}\,\mathsf{A})\mathsf{z}_1 + (\mathsf{b}\,\mathsf{sec}\,\mathsf{B})\mathsf{z}_2 + (\mathsf{csecC})\mathsf{z}_3}{\mathsf{asec}\,\mathsf{A} + \mathsf{bsec}\,\mathsf{B} + \mathsf{csecC}} \quad \mathsf{or} \quad \frac{\mathsf{z}_1\mathsf{tan}\,\mathsf{A} + \mathsf{z}_2\mathsf{tan}\mathsf{B} + \mathsf{z}_3\mathsf{tan}\,\mathsf{C}}{\mathsf{tan}\,\mathsf{A} + \mathsf{tan}\,\mathsf{B} + \mathsf{tan}\mathsf{C}}$$

$$\begin{vmatrix} z & \overline{z} & 1 \\ z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \end{vmatrix} = 0.$$
 This is also the condition for three complex numbers to be collinear. The above

- - (9)Condition for four given points z₁, z₂, z₃ & z₄ to be concyclic is the number $\frac{z_3-z_1}{z_1}$. $\frac{z_4-z_2}{z_1}$ should be real. Hence the equation of a circle through 3 non collinear

points z_1 , z_2 & z_3 can be taken as $\frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)}$ is real

$$\Rightarrow \qquad \frac{\left(z-z_2\right)\left(z_3-z_1\right)}{\left(z-z_1\right)\left(z_3-z_2\right)} = \frac{\left(\overline{z}-\overline{z}_2\right)\left(\overline{z}_3-\overline{z}_1\right)}{\left(\overline{z}-\overline{z}_1\right)\left(\overline{z}_3-\overline{z}_2\right)} \,.$$

- $Arg\left(\frac{z-z_1}{z-z_2}\right) = \theta$ represent (i) a line segment if $\theta = \pi$ (10)
 - Pair of ray if $\theta = 0$ (iii) a part of circle, if $0 < \theta < \pi$. (ii)
- Area of triangle formed by the points z_1 , $z_2 \& z_3$ is $\begin{vmatrix} 1 \\ 4i \end{vmatrix} \begin{vmatrix} z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \\ z_3 & \overline{z}_3 & 1 \end{vmatrix}$ (11)
- Perpendicular distance of a point z_0 from the line $\overline{\alpha}z + \alpha\overline{z} + r = 0$ is $\frac{|\overline{\alpha}z_0 + \alpha\overline{z}_0 + r|}{2|\alpha|}$ (12)
- Complex slope of a line $\overline{\alpha}z + \alpha\overline{z} + r = 0$ is $\omega = -\frac{\alpha}{\overline{\alpha}}$ (13)(i)
 - Complex slope of a line joining by the points $z_1 \& z_2$ is $\omega = \frac{\overline{z_1} \overline{z_2}}{\overline{z_1} \overline{z_2}}$ (ii)
 - (iii) Complex slope of a line making θ angle with real axis = $e^{2i\theta}$
- (14) $\omega_1 \& \omega_2$ are the compelx slopes of two lines.
 - If lines are parallel then $\omega_1=\omega_2$ If lines are perpendicular then $\omega_1+\omega_2=0$
- If $|z z_1| + |z z_2| = K > |z_1 z_2|$ then locus of z is an ellipse whose focii are $z_1 \& z_2$ (15)
- If $|z z_0| = \left| \frac{\overline{\alpha} z + \alpha \overline{z} + r}{2 |\alpha|} \right|$ then locus of z is parabola whose focus is z_0 and directrix is the (16)line $\overline{\alpha}z_0 + \overline{\alpha}z_0 + r = 0$
- $\frac{|z-z_1|}{|z-z_2|}$ = k \neq 1, 0, then locus of z is circle. (17)
- If $||z-z_1|-|z-z_2|| = K < |z_1-z_2|$ then locus of z is a hyperbola, whose focii are $z_1 \& z_2$. (18)

Match the following columns:

Column - I

- If |z-3+2i|-|z+i|=0, then locus of z represents (i)
- (ii)

then locus of z represents...

- (iii) if |z - 8 - 2i| + |z - 5 - 6i| = 5then locus of z represents
- (iv) then locus of z represents
- If |z-1|+|z+i|=10(v) then locus of z represents
- (vi) |z-3+i|-|z+2-i|=1then locus of z represents
- (vii) |z - 3i| = 25
- (viii)
 - Ι I

Ans.

- (vii)
- (ii) (v)
- (iii) (viii)
- (iv) (vi)
- (v) (iii)
- (vi)
- (vii)
- (v) Major Arc

Column - II

(ii)

(iii)

(iv)

circle

Ellipse

Hyperbola

Straight line

- (vi) Minor arc
- (vii) Perpendicular bisector of a line segment

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

- (viii) Line segment (viii)
- (iv) (i) (ii)

Two given points P & Q are the reflection points for a given straight line if the given line is the right bisector of the segment PQ. Note that the two points denoted by the complex numbers $z_1 \& z_2$ will be the reflection points for the straight line $\overline{\alpha} z + \alpha \overline{z} + r = 0$ if and only if; $\overline{\alpha} z_1 + \alpha \overline{z}_2 + r = 0$, where r is real and α is non zero complex constant.

38

page 12 of

0 98930 58881.

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779,

Inverse points w.r.t. a circle:

Two points P & Q are said to be inverse w.r.t. a circle with centre 'O' and radius ρ , if:

- the point O, P, Q are collinear and P, Q are on the same side of O.
- OP. $OQ = \rho^2$.

Note: that the two points $z_1 \& z_2$ will be the inverse points w.r.t. the circle $z \overline{z} + \overline{\alpha} z + \alpha \overline{z} + r = 0$ if and only if $z_1 \overline{z}_2 + \overline{\alpha} z_1 + \alpha \overline{z}_2 + r = 0$.

Ptolemy's Theorem:

Let

It states that the product of the lengths of the diagonals of a convex quadrilateral inscribed in a circle is equal to the sym, of the products of lengths of the two pairs of its opposite sides.

i.e.
$$|z_1 - z_3| |z_2 - z_4| = |z_1 - z_2| |z_3 - z_4| + |z_1 - z_4| |z_2 - z_3|$$
.

If $\cos \alpha + \cos \beta + \cos \gamma = 0$ and also $\sin \alpha + \sin \beta + \sin \gamma = 0$, then prove that

- $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = \sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$
- (ii) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin (\alpha + \beta + \gamma)$
- (iii) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos (\alpha + \beta + \gamma)$

$$z_{1} = \cos \alpha + i \sin \alpha, z_{2} = \cos \beta + i \sin \beta,$$

$$z_{3} = \cos \gamma + i \sin \gamma.$$

$$z_{1} + z_{2} + z_{3} = (\cos \alpha + \cos \beta + \cos \gamma) + i (\sin \alpha + \sin \beta + \sin \gamma)$$

$$= 0 + i \cdot 0 = 0$$
(1)

(i) Also
$$\frac{1}{z_1} = (\cos \alpha + i \sin \alpha)^{-1} = \cos \alpha - i \sin \alpha$$

$$\frac{1}{z_1} = \cos \beta - i \sin \beta, \frac{1}{z_1} - \cos \gamma - \sin \gamma$$

$$\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} = (\cos \alpha + \cos \beta + \cos \gamma) - i \left(\sin \alpha + \sin \beta + \sin \gamma\right)$$
 (2)

$$= 0 - i \cdot 0 = 0$$
Now $z_1^2 + z_2^2 + z_3^3 = (z_1 + z_2 + z_3)^2 - 2(z_1 z_2 + z_2 z_3 + z_3 z_1)$

$$= 0 - 2z_1z_2z_3\left(\frac{1}{z_3} + \frac{1}{z_1} + \frac{1}{z_2}\right)$$

= $0 - 2z_1 z_2 z_3$. 0 = 0, using (1) and (2) ($\cos \alpha + i \sin \alpha$)² + ($\cos \beta + i \sin \beta$)² + ($\cos \gamma + i \sin \gamma$)² = $0 \cos 2\alpha + i \sin 2\alpha$)² + $\cos 2\beta + i \sin 2\beta + \cos 2\gamma + i \sin 2\gamma = 0 + i.0$

Equation real and imaginary parts on both sides, $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = 0$ and

sin
$$2\alpha$$
 + sin 2β + sin 2γ = 0
(ii) $z_1^3 + z_2^3 + z_3^3 = (z_1 + z_2)^3 - 3z_1z_2(z_1 + z_2) + z_3^3 = (-z_3)^3 - 3z_1z_2(-z_3) + z_3^3$, using (1) = $3z_1z_2z_3$

 $(\cos \alpha + i \sin \alpha)^3 + (\dot{\cos} \beta + i \sin \beta)^3 + (\cos \gamma + i \sin \gamma)^3$ = 3 (cos α + i sin α) (cos β + i sin β) (cos γ + i sin γ) $\cos 3\alpha + i \sin 3\alpha + \cos 3\beta + i \sin 3\beta + \cos 3\gamma + i \sin 3\gamma$ or

= $3(\cos(\alpha + \beta + \gamma) + i \sin(\alpha + \beta + \gamma)$ Equation imaginary parts on both sides, $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin (\alpha + \beta + \gamma)$

<u>Alternative method</u>

Let
$$C \equiv \cos\alpha + \cos\beta + \cos\gamma = 0$$

$$S \equiv \sin\alpha + \sin\beta + \sin\gamma = 0$$

$$C + iS = e^{i\alpha} + e^{i\beta} + e^{i\gamma} = 0$$

$$C - iS = e^{-i\alpha} + e^{-i\beta} + e^{-i\gamma} = 0$$

$$(2)$$
From (1)
$$\Rightarrow (e^{-i\alpha})^2 + (e^{-i\beta})^2 + (e^{-i\gamma})^2 = (e^{i\alpha})(e^{i\beta}) + (e^{i\beta})(e^{i\gamma}) + (e^{i\gamma})(e^{i\alpha})$$

$$\Rightarrow e^{i2\alpha} + e^{i2\beta} + e^{i2\gamma} = e^{i\alpha} e^{i\beta} e^{i\gamma} (e^{-2\gamma} + e^{-i\alpha} + e^{i\beta})$$

$$\Rightarrow e^{i(2\alpha)} + e^{i2\beta} + e^{i2\gamma} = 0 \quad \text{(from 2)}$$
Comparing the real and imaginary parts we

 $\begin{array}{l} \cos 2\alpha + \cos 2\beta + \cos 2\gamma - \sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0 \\ \text{Also from (1) } (e^{i\alpha})^3 + (e^{i\beta})^3 + (e^{i\gamma})^3 = 3e^{i\alpha} \ e^{i\beta} \ e^{i\gamma} \\ \Rightarrow \ e^{i3\alpha} + e^{i3\beta} + e^{i3\gamma} = 3e^{i(\alpha+\beta+\gamma)} \end{array}$

Comparing the real and imaginary parts we obtain the results.

Example: If z_1 and z_2 are two complex numbers and c > 0, then prove that

$$|z_1 + z_2|^2 \le (1 + c) |z_1|^2 + (1 + c^{-1}) |z_2|^2$$

$$\begin{aligned} |z_1 + z_2|^2 &\leq (1+c) |z_1|^2 + (1+c^{-1}) |z_2|^2 \\ \text{i.e.} \qquad |z_1|^3 + |z_2|^2 + z_1 \overline{z}_2 + \overline{z}_2 z_2 &\leq (1+c) |z_1|^2 + (1+c^{-1}) |z_2|^3 \end{aligned}$$

or
$$Z_1 \overline{Z}_2 + \overline{Z}_2 Z_2 \le C|Z_1|^2 + C^{-1}|Z_2|^2$$

or
$$c|z_1|^2 + \frac{1}{c}|z_2|^2 - z_1\bar{z}_2 - \bar{z}_2z_2 \ge 0$$

page 13 of

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

(i)

(using Re $(z_1 \overline{z}_2) \le |z_1 \overline{z}_2|$)

$$\left(\sqrt{c}\,\left|z_1\right| - \frac{1}{\sqrt{c}}\,|\,z_2\,|\right)^2 \geq 0$$

which is always true

Example:

If $\theta_1 \in [\pi/6, \pi/3]$, i = 1, 2, 3, 4, 5, and $z^4 \cos \theta_1 + z^3 \cos \theta_2 + z^3 \cos \theta_3$. $+ z \cos \theta_4 + \cos \theta_5 = 2\sqrt{3}$

then show that $|z| > \frac{3}{4}$

Solution.

Given that

$$\cos\theta_1 \cdot z^4 + \cos\theta_2 \cdot z^3 + \cos\theta_3 \cdot z^2 + \cos\theta_4 \cdot z + \cos\theta_5 = 2\sqrt{3}$$

$$\begin{array}{c} \text{cos}\theta_1 \cdot \text{z}^4 + \cos\theta_2 \cdot \text{z}^3 + \cos\theta_3 \cdot \text{z}^2 + \cos\theta_4 \cdot \text{z} + \cos\theta_5 = 2\sqrt{3} \\ \text{or} \quad & |\cos\theta_1 \cdot \text{z}^4 + \cos\theta_2 \cdot \text{z}^3 + \cos\theta_3 \cdot \text{z}^2 + \cos\theta_4 \cdot \text{z} + \cos\theta_5| = 2\sqrt{3} \\ & 2\sqrt{3} \leq |\cos\theta_1 \cdot \text{z}^4| + |\cos\theta_2 \cdot \text{z}^3| + |\cos\theta_3 \cdot \text{z}^2| + \cos\theta_4 \cdot \text{z}| + |\cos\theta_5| \\ \therefore \quad & \theta \text{i} \in [\pi/6, \, \pi/3] \end{array}$$

$$2\sqrt{3} \le |\cos\theta_1| \cdot |z^4|^2 + |\cos\theta_2| \cdot |z^3| + |\cos\theta_3| \cdot |z^2| + |\cos\theta_4| \cdot |z| + |\cos\theta_5|$$

•:

$$\therefore \qquad \frac{1}{2} \le \cos\theta_i \le \frac{\sqrt{3}}{2}$$

$$2\sqrt{3} \, \leq \, \frac{\sqrt{3}}{2} \, \, |z|^4 \, + \, \frac{\sqrt{3}}{2} \, |z|^3 \, + \, \frac{\sqrt{3}}{2} \, |z|^2 + \, \frac{\sqrt{3}}{2} \, |z| + \, \frac{\sqrt{3}}{2}$$

$$3 \le |z|^4 + |z|^3 + |z|^2 + |z|$$

$$3 < |z| + |z|^2 + |z|^3 + |z|^4 + |z|^5 + \dots$$

$$3 < \frac{|z|}{1 - |z|}$$

$$3 - e |z| < |z|$$

$$|z| > \frac{3}{2}$$

Example:

Solution

Two different non parallel lines cut the circle |z| = r in point a, b, c, d respectively. Prove that

 $-1 + b^{-1} - c^{-1} - d^{-1}$ these lines meet in the point z given by z =

Since point P, A, B are collinear

$$P(z) A(a)$$
 $B(b)$ $z \bar{z} 1$

$$\begin{vmatrix} z & \overline{z} & 1 \\ a & \overline{a} & 1 \\ b & \overline{b} & 1 \end{vmatrix} = 0 \implies$$

$$z(\overline{a} - \overline{b}) - \overline{z} (a - b) + (a\overline{b} - a\overline{b}) = 0$$

Similarlym, since points P, C, D are collinear

$$\therefore z\left(\overline{a}-\overline{b}\right)(c-d)-z\left(\overline{c}-\overline{d}\right)(a-b)=\left(c\overline{d}-\overline{c}d\right)(a-b)-\left(a\overline{b}-\overline{a}b\right)(c-d) \tag{iii}$$

$$\therefore \qquad z\overline{z} = r^2 = k \text{ (say)} \qquad \therefore \qquad \overline{a} = \frac{k}{a}, \ \overline{b} = \frac{k}{b}, \ \overline{c} = \frac{k}{c} \text{ etc.}$$

From equation (iii) we get

$$z\left(\frac{k}{a}-\frac{k}{b}\right)(c-d)-z\left(\frac{k}{c}-\frac{k}{d}\right)(a-b)=\left(\frac{ck}{d}-\frac{kd}{c}\right)(a-b)-\left(\frac{ak}{b}-\frac{bk}{a}\right)(c-d)$$

$$\therefore \qquad z = \frac{a^{-1} + b^{-1} - c^{-1} - d^{-1}}{a^{-1}b^{-1} - c^{-1}d^{-1}}$$

page 14 of Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

Short Revision

DEFINITION:

Complex numbers are definited as expressions of the form a + ib where $a, b \in R \& i = \sqrt{-1}$. It is denoted by z i.e. z = a + ib. 'a' is called as real part of z (Re z) and 'b' is called as imaginary part of z (Im z).

EVERY COMPLEX NUMBER CAN BE REGARDED AS

- The set R of real numbers is a proper subset of the Complex Numbers. Hence the Complete Number system is $N \subset W \subset I \subset Q \subset R \subset C$.
- Zero is both purely real as well as purely imaginary but not imaginary.
- $i = \sqrt{-1}$ is called the imaginary unit. Also $i^2 = -1$; $i^3 = -i$; $i^4 = 1$ etc.
- $\sqrt{a} \sqrt{b} = \sqrt{ab}$ only if at least one of either a or b is non-negative.

CONJUGATE COMPLEX:

If z = a + ib then its conjugate complex is obtained by changing the sign of its imaginary part & is denoted by \overline{z} . i.e. $\overline{z} = a - ib$.

- $z + \overline{z} = 2 \operatorname{Re}(z)$ (ii) $z - \bar{z} = 2i \operatorname{Im}(z)$ (iii) $z \overline{z} = a^2 + b^2$ which is real
- If z lies in the 1st quadrant then \bar{z} lies in the 4th quadrant and $-\bar{z}$ lies in the 2nd quadrant.

ALGEBRAIC OPERATIONS:

The algebraic operations on complex numbers are similar to those on real numbers treating i as a polynomial. Inequalities in complex numbers are not defined. There is no validity if we say that complex number is positive or negative.

e.g.
$$z > 0$$
, $4 + 2i < 2 + 4i$ are meaningless.

However in real numbers if $a^2 + b^2 = 0$ then a = 0 = b but in complex numbers,

$$z_1^2 + z_2^2 = 0$$
 does not imply $z_1 = z_2 = 0$.

EQUALITY IN COMPLEX NÚMBER:

Two complex numbers $z_1 = a_1 + ib_1 & z_2 = a_2 + ib_2$ are equal if and only if their real & imaginary parts coincide.

REPRESENTATION OF A COMPLEX NUMBER IN VARIOUS FORMS:

Cartesian Form (Geometric Representation):

Every complex number $z = x + i \bar{y}$ can be represented by a point on the cartesian plane known as complex plane (Argand diagram) by the ordered pair (x, y).

length OP is called modulus of the complex number denoted by |z| & θ is called the argument or amplitude .

eg.
$$|z| = \sqrt{x^2 + y^2} \&$$

 $\theta = \tan^{-1} \frac{y}{x}$ (angle made by OP with positive x-axis)

- |z| is always non negative. Unlike real numbers |z| = is **not correct**
- Howe system that:

 | Complete the case of Argument of a complex number is a many valued function. If θ is the argument of a complex number then $2 n\pi + \theta$; $n \in I$ will also be the argument of that complex number. Any two arguments of a complex number differ by $2n\pi$.
 - The unique value of θ such that $-\pi < \theta \le \pi$ is called the principal value of the argument.
 - Unless otherwise stated, amp z implies principal value of the argument.
 - By specifying the modulus & argument a complex number is defined completely. For the complex number 0+0i the argument is not defined and this is the only complex number which is given by its modulus.
 - There exists a one-one correspondence between the points of the plane and the members of the set of (vi) complex numbers.

(b) Trignometric / Polar Representation:

 $z = r(\cos \theta + i \sin \theta)$ where |z| = r; arg $z = \theta$; $\overline{z} = r(\cos \theta - i \sin \theta)$

Note: $\cos \theta + i \sin \theta$ is also written as CiS θ .

Also $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ & $\sin x = \frac{e^{ix} - e^{-ix}}{2}$ are known as Euler's identities.

Exponential Representation:

$$z = r e^{i\theta} \ ; \mid z \mid = r \ ; \ arg \ z \ = \ \theta \ ; \ \overline{z} \ = r e^{-i\theta}$$

IMPORTANT PROPERTIES OF CONJUGATE / MODULI / AMPLITUDE:

If z, z_1 , $z_2 \in C$ then;

$$z + \overline{z} = 2 \operatorname{Re}(z)$$
; $z - \overline{z} = 2 \operatorname{i} \operatorname{Im}(z)$; $\overline{(\overline{z})} = z$; $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$;

$$\overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2 \quad ; \quad \overline{z_1 z_2} = \overline{z}_1 \cdot \overline{z}_2 \qquad \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2} \quad ; \quad z_2 \neq 0$$

$$|z| \ge 0$$
; $|z| \ge \text{Re}(z)$; $|z| \ge \text{Im}(z)$; $|z| = |\overline{z}| = |-z|$; $|z| = |z|^2$;

$$|\;z_1\;z_2\;| = |\;z_1\;|\;.\;|\;z_2\;| \qquad \qquad ; \qquad \qquad \left|\frac{z_1}{z_2}\;\right| = \frac{|z_1\;|}{|\;z_2\;|}\;\;,\;\;z_2 \neq 0\;,\;\;|\;z^n\;| = |\;z\;|^n \quad ;$$

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2 [|z_1|^2 + |z_2|^2]$$

$$\begin{vmatrix} |z_1| - |z_2| & | \le |z_1 + z_2| \le |z_1| + |z_2| \\ \text{(i)} & \text{amp } (z_1, z_2) = \text{amp } z_1 + \text{amp } z_2 + 2 \text{ k}\pi. \end{vmatrix}$$
 [TRIANGLE INEQUALITY]

(ii)
$$amp\left(\frac{z_1}{z_1}\right) = amp z_1 - amp z_2 + 2 k\pi \; ; \; k \in I$$

(iii)
$$amp(z^n) = n amp(z) + 2k\pi$$
.

 $amp(z^n) = n \ amp(z) + 2k\pi$. where proper value of k must be chosen so that RHS lies in $(-\pi, \pi]$.

VECTORIAL REPRESENTATION OF A COMPLEX:

Every complex number can be considered as if it is the position vector of that point. If the point P

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

 $Q(z_1)$

represents the complex number z then, $\overrightarrow{OP} = z \& |\overrightarrow{OP}| = |z|$

NOTE:

(i) If
$$\overrightarrow{OP} = z = re^{i\theta}$$
 then $\overrightarrow{OQ} = z_1 = re^{i(\theta + \phi)} = z \cdot e^{i\phi}$. If \overrightarrow{OP} and \overrightarrow{OQ} are of unequal magnitude then $\overrightarrow{OQ} = \overrightarrow{OP}e^{i\phi}$

(a)
$$z_1^2 + z_2^2 + z_3^2 - z_1 z_2 - z_2 z_3 - z_3 z_1 = 0$$
 (b) $z_1^2 + z_2^2 + z_3^2 = 3 z_0^2$

DEMOIVRE'S THEOREM: Statement: $\cos n\theta + i \sin n\theta$ is the value or one of the values of $(\cos \theta + i \sin \theta)^n Y \in Q$. The theorem is very useful in determining the roots of any complex **Note:** Continued product of the roots of a complex quantity should be determined using theory of equations.

CUBE ROOT OF UNITY: (i) The cube roots of unity are 1, $\frac{-1+i\sqrt{3}}{2}$, $\frac{-1-i\sqrt{3}}{2}$. If w is one of the imaginary cube roots of unity then $1 + w + w^2 = 0$. In general

 $1 + w^r + w^{2r} = 0$; where $r \in I$ but is not the multiple of 3.

In polar form the cube roots of unity are:

$$\cos 0 + i \sin 0$$
; $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$, $\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$

- The three cube roots of unity when plotted on the argand plane constitute the verties of an equilateral triangle. (iv)
- **(v)** The following factorisation should be remembered: $(a, b, c \in R \& \omega \text{ is the cube root of unity})$